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Abstract. A multiple-reaction irreversible surface reaction model involving one dimer (B2) and
two different monomers (A and C) is proposed and studied by means of Monte Carlo simulations.
This dimer–monomer–monomer (DMM) model is suitable to investigate, on the one hand, the
influence caused by dimer traces on the behaviour of the monomer–monomer (MM) model, i.e.
A + C → AC, and on the other hand, the effects of monomer traces on the dimer–monomer
(DM) model, i.e. 1

2B2 + A → AB, which mimics the catalytic oxidation of carbon monoxide
(B is O, A is CO and AB is CO). TheDMM model exhibits irreversible phase transitions (IPTs)
between poisoned states with the surface saturated by adsorbed species and reactive regimes
with production of AB, AC and BC. The critical points at which second- and first-orderIPTs take
place are determined. Second-orderIPTs belong to the universality class of directed percolation.
However, universality is not found to hold at first-orderIPTs due to short-range correlations. So,
each critical point has its own set of critical exponents. These exponents smoothly cross over
from values characteristic of theDM model to those of theMM model.

1. Introduction

Stochastic lattice-gas models have very recently received growing attention in connection
with the study of far-from-equilibrium reaction processes [1–3]. These processes include
heterogeneously catalysed reactions which often exhibit irreversible phase transitions (IPTs)
between reactive steady states and poisoned states. By analogy to thermodynamic phase
transitions, this term means physically that the behaviour of the system changes qualitatively
when some control parameter, such as the temperature or the pressure, is finely tuned close
to a critical point. If the change of the order parameter is stepwise at the critical point, the
IPT is of first order. If the change is continuous theIPT is of second order.

Within this context the dimer–monomer (DM) model as proposed by Ziffet al [4] has
been studied extensively using a great variety of theoretical approaches, see e.g. [5–22] and
references therein. TheDM model for the reaction A+ 1

2B2 → AB exhibits two IPTs: one
of second order at low partial pressure of the monomer and the other of first order at higher
pressures. For intermediate pressures, between the critical points, a stationary reactive state
is observed [4]. Also, the monomer–monomer (MM) model, A+C → AC, has been studied
recently [2, 3, 5, 23]. For this model the surface is always poisoned with either monomer A
or C, except when the partial pressure of both species is the same and a reactive state is
observed. TheIPTs from the poisoned states to the reactive regime are of first order.
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The aim of this work is to propose and study, by means of the Monte Carlo method,
a multiple-reaction surface reaction model, namely a dimer–monomer–monomer (DMM)
model. TheDMM model is based upon both theDM and theMM models. Interest in the study
of multiple reaction systems is due to many reasons [24]. In fact, heterogeneously catalysed
reactions deal with mechanisms consisting of a vast number of elementary processes. Since
the handling of such a large number of mechanisms imposes severe problems, the usual
procedure is to rationalize their study. Within this context, the study of theDMM model
allows us to investigate the influence of C-traces (B-traces) in the irreversible behaviour
of the DM model (MM model), respectively. That is, the influence of contaminants on the
critical behaviour of the well knownIPTs characteristic of both theDM andMM processes can
be studied. Furthermore, theDMM model itself exhibits an interesting and rich irreversible
critical behaviour.

The paper is organized as follows. TheDMM model is described and discussed in
section 2. Section 3 is devoted to the description of the Monte Carlo simulation method.
Results are presented and discussed in section 4. Finally, in section 5 we state our
conclusions.

2. The dimer–monomer–monomer surface reaction model

The reaction scheme studied in this work is based upon the well known Langmuir–
Hinshelwood mechanism for which the reactants must be adsorbed on the catalytic surface,
so

A(g) + (∗) → A(a) (1a)

B2(g) + 2(∗) → 2B(a) (1b)

C(g) + (∗) → C(a) (1c)

A(a) + B(a) → AB(g) + 2(∗) (1d)

A(a) + C(a) → AC(g) + 2(∗) (1e)

C(a) + B(a) → CB(g) + 2(∗) (1f)

where (∗) denotes a vacant site on the catalyst surface, while (a) and (g) indicate adsorbed
and gas phase species, respectively. Surface sites can be empty or occupied by A, B or C
species with average coveragesθA, θB andθC, respectively. The gas phase in contact with
the catalyst surface is assumed to be kept at constant pressure and composition of A, B2 and
C molecules. So, the respective rate of arrival and subsequent sticking coefficients areYA,
YB andYC, which are normalized so thatYA + YB + YC = 1, and consequently the model
has only two parameters, namelyYA and YC. For YC = 0, equations (1a), (1b) and (1d)
correspond to theDM model: A+ 1

2B2 → AB; for YA = 0, equations (1b), (1c) and (1f )
correspond to theDM model: C+ 1

2B2 → CB, and forYB = 0, equations (1a), (1c) and
(1e) correspond to theMM model: A+ C → AC.

3. Description of the Monte Carlo simulation method

The DMM reaction model was simulated on the homogeneous square lattice of sideL = 252
lattice units using periodic boundary conditions. The simulation algorithm may be briefly
summarized as follows: a site, say site 1, of the catalytic surface is initially selected at
random. If site 1 is occupied the trial ends but if site 1 is empty an A, B2 or C species is
selected at random with probabilitiesYA, YB andYC, respectively. If the selected species is
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a dimer(B2) a nearest-neighbour (NN) site, say site 2, is also selected at random. If site 2 is
occupied the trial ends because there is no place for dimer adsorption. Otherwise, if site 2
is also empty the dimer is adsorbed. Otherwise, if the selected species is a monomer, it is
adsorbed on site 1. When a species becomes adsorbed its nearest-neighbour (NN) sites must
be examined in order to account for the reactions described by (1d)–(1f ). These reactions
are assumed to take place only when the involved species are adsorbed onNN sites. If,
after adsorption, more than one type of reaction is possible, the reaction path is selected at
random.

The Monte Carlo time unit (t) involves L2 trials, so each site of the lattice will be
visited once, on average, during each time unit. Additional simulation details can be found
in earlier publications of both theDM [4] and theMM [5] models, respectively.

Simulations are performed on a PowerXplorer, supplied by Parsytec (Germany),
built with eight PowerPC 601 application processors (32 MB RAM each) and eight
T805 VCP communication processors. The computer system allows the development of
fully parallelized codes. Evaluation of a single epidemy (106 averages, see section 3.2)
close to criticality typically requires one CPU day.

4. Results and discussion

4.1. The phase diagram of theDMM model

For YC = 0, the DMM model is mapped onto theDM model [4], so equations (1a),
(1b) and (1d) correspond to theDM model A + 1

2B2 → AB. That is, (see figure 1),
for Y1A 6 0.3905 (Y2A > 0.525) the surface becomes fully covered by B(A) species,
respectively. So, within these regimes the system becomes irreversibly poisoned by the
reactants and the production of AB stops. These poisoned states are unique in the sense
that they correspond to a single configuration of the covered surface. Within the interval
Y1A 6 YA 6 Y2A one observes sustained production of AB and therefore bothY1A and
Y2A are critical points at whichIPTs between the reactive regime and poisoned states of the
surface take place. The transition atY1A is continuous (second order) while the transition at
YA is discontinuous (first order). Also, forYA = 0, equations (1b), (1c) and (1f ) correspond

Figure 1. Plots of the reactant coverages
θA, θB and the rate of AB production
(RAB) versusYA obtained keepingYC =
0, i.e. theDM model. Note the existence
of second- and first-orderIPTs at Y1A =
0.3905 andY2A = 0.525, respectively.
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Figure 2. (a) Plots of the reactant coverages
θA, θB andθC and (b) the reaction ratesRAB,
RBC and RAC versusYA obtained keeping
YC = 0.10. Note the existence of second-
and first-orderIPTs at Y1A = 0.2905 and
Y2A = 0.495, respectively.

to theDM model C+ 1
2B2 → CB and the corresponding phase diagram is the same as that

shown in figure 1 but now A has to be replaced by C. For additional details on theDM

model see [4–22].
For YB = 0, equations (1a), (1c) and (1e) correspond to theMM model A+ C → AC.

Now there is a single (trivial) critical point atY1C = Y1A = 1
2 such as forYC < Y1C

(YC > Y1C) the surface becomes irreversibly poisoned by A (species C), respectively. The
IPT at Y1C is of first order. It is expected that, just at criticality, a sustained reaction with
AC production can only take place on the infinite lattice [5, 23]. For additional details on
the MM model see [2, 3, 5, 23].

Due to the presence of a small fraction of C species in the gas phase theIPTs become
slightly shifted (see figure 2 forYC = 0.10) and the phase diagram is similar to that of
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Figure 3. (a) Plots of the reactant
coveragesθA, θB and θC (b) the reaction
rates RAB, RBC and RAC versus YA

obtained keepingYB = 0.10. Note the
existence of first-orderIPTs at Y1A = 0.405
andY2A = 0.495, respectively.

the DM model shown in figure 1. In fact, the second-orderIPT occurs atY ∗
A = Y1A − YC,

whereY1A is the critical point of theDM model. So, the transition takes place at a well
determined total pressure of monomers given byYA + YC = Y1A

∼= 0.3905, suggesting
that both monomers play the same role. However, the surface coverage with the monomer
with smaller partial pressure (C in this example) is negligible (see figure 2(a)) because this
species is quickly removed from the surface via two reaction paths given by equations (1e)
and (1f ), see also figure 2(b). Also, within the reactive regime it is found thatRBC > RAC

because B are the majority species on the surface. On the other hand, nowRAB is slightly
enhanced due to the presence of C species as compared with the pureDM model withYC = 0
(figure 1).

The introduction of a small contamination with dimers causes the zero-width reaction
window of theMM model to become opened, as is shown in figure 3 forYB = 0.10. The
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Figure 4. Plot of the critical points
YC versusYA of the DMM model. (O)
second-orderIPTs, (H) and (�) first-
orderIPTs. (•) shows the location of the
IPT of the MM model.

phase diagram is now symmetric around the pointYS
A = Y1A − 1

2YB, whereY1A = 1
2 is the

critical point of theMM model in the absence of dimers. TheIPTs at the boundaries of the
reaction window are of first order.

As follows from figures 2 and 3, the poisoned states of theDMM model are unique, in
the sense that the catalyst surface becomes saturated by a single species, namely A, B or C.
This behaviour is in contrast to that observed for the monomer–dimer–dimer model, where
non-unique poisoned states are found [25–27].

Scanning bothYA and YC one can construct the complete phase diagram of theDMM

model as shown in figure 4. The open triangles indicate second-orderIPTs from poisoned
states with B species and the reactive regime with sustained production. Open squares and
full triangles show first-orderIPTs from the reactive regime to poisoned states with C and
A species, respectively. Also, the full circle shows the critical point of theMM model.

4.2. The time-dependent critical behaviour of theDMM model

The determination of ‘static’ exponents in irreversible reaction systems, such as the order
parameter critical exponent, the correlation length exponent, the susceptibility exponent, etc,
is quite difficult and rather inaccurate due to finite-size effects and metastabilities of the
system. In fact, fort → ∞ the final state of all finite systems must be a poisoned one. It
has been established that a fruitful approach to overcome this shortcoming is to perform an
epidemic analysis and to calculate exponents related to the time-dependent critical behaviour
of the process [13, 15, 16, 21, 26, 27]. For this purpose one proceeds as follows: simulations
start with lattices completely poisoned except for a blob of empty sites placed close to
the centre of the sample. Then, the time evolution of the blob embedded in the poisoned
state is monitored. The measured quantities are: (i) the survival probabilityP(t), that is,
the probability that the sample was not poisoned aftert time steps and (ii) the average
number of empty sitesN(t). The number of empty sitesN(t) is averaged over all samples,
including those that have already been poisoned. Averages are taken overK independent
realizations (or runs). Each run proceeds until some fixed maximum timetM, unless the
sample becomes poisoned beforetM. Typically we usedK = 106, tM = 103 and blobs of
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different size, between two and six empty sites (critical points and critical exponents are
found to be independent of the blob size). The sample size is taken large enough in order to
prevent empty sites from reaching the boundaries. Using this procedure the obtained results
are free of undesired finite-size effects. At the critical point and in thet → ∞ limit it is
expected that the following scaling laws should hold [28]:

P(t) ∝ t−δ (2)

and

N(t) ∝ tη . (3)

So, just at criticality, the asymptotic slopes of log–log graphs of equations (2) and (3) define
the dynamic critical exponentsδ andη, respectively, while slightly off-criticality deviations
from the asymptotic linear behaviour are expected to occur. The latter property also allows
us a precise determination of the critical threshold. Since we are mainly interested in the
critical behaviour of theDMM model close to the first-order critical threshold, we do not
have to evaluate the average mean square distance of spreading [15, 16].

It has been established that second-orderIPTs belong to the universality class of directed
percolation (DP), or equivalently to Reggeon field theory [13, 28], e.g. with dynamic critical
exponentsη ∼= 0.214± 0.008 andδ ∼= 0.460± 0.006. Epidemic analysis performed along
the second-order critical line shown in figure 4 confirms that theseIPTs also belong to the
universality class ofDP.

Epidemic analysis has also been performed along the first-order critical lines shown
in figure 4. These studies are more interesting since one should expect the absence of
universality. Figures 5(a) and (b) show log–log plots ofN(t) andP(t) versust obtained
taking YC = 0.10 and scanningYA close to criticality. The straight line behaviour
obtained in both figures forYA = 0.4950 is the signature of criticality, while upward
(downward) deviations forYA = 0.4945 (YA = 0.4955) indicate supercritical (subcritical)
behaviour, respectively. The results of epidemic analysis performed at other critical points
are summarized in figures 6(a) and (b) and the critical exponents obtained are listed in
table 1.

The reported critical exponents (see table 1) clearly show that these first-orderIPTs do
not belong to theDP universality class, as expected. Furthermore, the exponentsη are
negative while forDP they are positive. As has already been discussed, forYC = 0 theDMM

model is mapped onto theDM model. So, the obtained critical exponents are in excellent
agreement with previously reported values (see the two first rows of table 1). On the other

Table 1. List of critical points and critical exponentsδ andη, for the first-orderIPTs of the DMM

model, defined according to equations (2) and (3). PW≡ present work. The quoted error bars
merely reflect the statistical error.

YA YC δ η Reference

0.525 0.0 3.7± 0.2 −2.4 ± 0.2 [15]
0.525 0.0 3.20± 0.09 −2.35± 0.11 PW
0.4950 0.10 2.21± 0.04 −1.27± 0.03 PW
0.4785 0.20 1.50± 0.04 −0.53± 0.005 PW
0.476 0.30 1.18± 0.02 −0.21± 0.005 PW
0.484 0.40 — −0.105± 0.005 PW
0.500 0.50 0.93± 0.01 −0.039± 0.002 PW
0.500 0.50 0.95 −0.039 [2, 5]
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Figure 5. Log–log plots of (a) N(t) and
(b) P(t) versust obtained takingYC =
0.10 and scanningYA. YA = 0.4945
(upper curves, supercritical),YA =
0.4950 (middle curves, criticality) and
YA = 0.4955 (lower curves, subcritical).

hand, forYA = YC = 1
2, the DMM model is mapped onto theMM model and the results of

the present work are also in excellent agreement with previously reported values (see the
last two rows of table 1).

It is interesting to note that critical exponent values can be tuned by varying the
parameters [YA, YC] and the crossover from theDMM model to theMM model is smooth (see
figure 6 and table 1). Similarly, Evanset al [15] have found that the same exponents for the
DM model can also be tuned when the rate of reaction varies. Also, simulations of theDM

model assuming that the dimer adsorbs according to the ‘hot dimer’ deposition mechanism
indicate that the exponentsη andδ at first-orderIPTs can be tuned by varying the distance
which each of the monomers can take resulting from hot dimer dissociation [29].

It has been established that second-orderIPTs into absorbing or poisoned states
generically belong to the universality class of directed percolation [13, 28]. Our epidemic
analysis at the continuousIPTs of the DMM model gives critical exponents in full agreement
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Figure 6. Log–log plots of (a) N(t) and
(b) P(t) versus t obtained at criticality.
The lower and upper curves correspond
to the DM and MM models, respectively.
Intermediate curves correspond to the
critical points listed in table 1. The
obtained critical exponents from the
asymptotic behaviour of the plots are also
listed in table 1.

with these findings. As in the case of standard second-order reversible transitions, this
behaviour can be understand considering that the correlation length (ξ ) diverges when
approaching criticality and consequentlyξ is the only relevant length scale. Microscopic
details of the models, with length scales much shorter thanξ , become overlapped and
consequently they are irrelevant. This mechanism is the origin of universality. In contrast,
correlations are short range close to first-orderIPTs and consequently microscopic details of
the models are relevant: universality is not observed and each pair of critical points has its
own set of critical exponents as, for example, is shown in table 1.

Due to the lack of a satisfactory theory capable of describing first-orderIPTs in reaction
systems, the explanation of the obtained results on the basis of analytical arguments is not
yet possible. However, the physical picture behind the epidemic analysis performed can
be understood in terms of the description outlined by Evanset al [15, 16]. Our epidemic
analysis reveals that, within the reactive regime and even very close to the critical point,
most of the initially empty blobs embedded in the poisoned state quickly become poisoned
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(see, for example, figures 5 and 6). However, later on a few surviving epidemic blobs
eventually prevail, spreading the reactive steady state across the entire sample. The large
positive δ values and the large negativeη values (see table 1) reveal a greatly reduced
epidemic survivability. In contrast, the conventional epidemic behaviour characteristic of
directed percolation-type continuous transitions produces small positive values forδ andη.

5. Conclusions

The critical behaviour of a dimer–monomer–monomer (DMM) model involving one dimer
and two different monomers is studied. TheDMM model has a continuous set of both
second- and first-order irreversible phase transitions (IPTs). Critical points are precisely
determined by means of an epidemic analysis which also allows us to evaluate dynamic
critical exponents. These exponents confirm that second-orderIPTs belong to the universality
class of directed percolation, while universality is not found at first-orderIPTs. The dynamic
exponents of the first-orderIPTs cross over, along the critical line, between the values
characteristic of theDM model and those of theMM model.

Further investigations of generalized versions of theDMM model, e.g. to account
for surface diffusion, desorption, hot-dimer deposition, different rate constants, lateral
interactions, etc, will be addressed in future works.
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